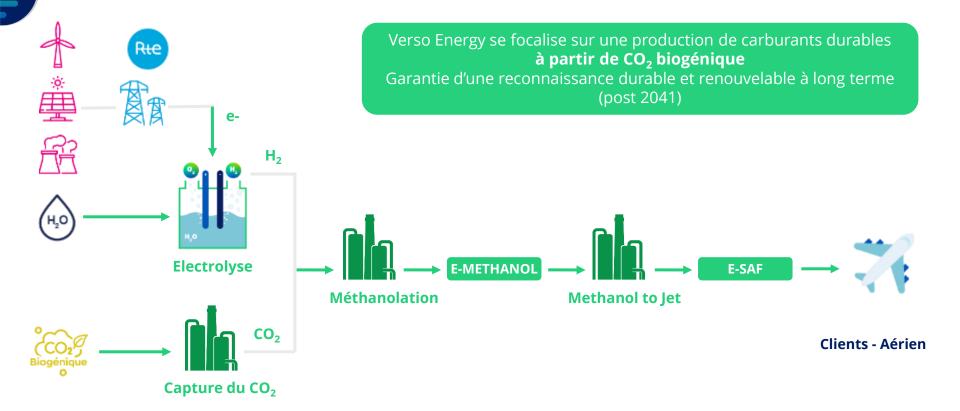


LE PROJET

Ep'HyNE

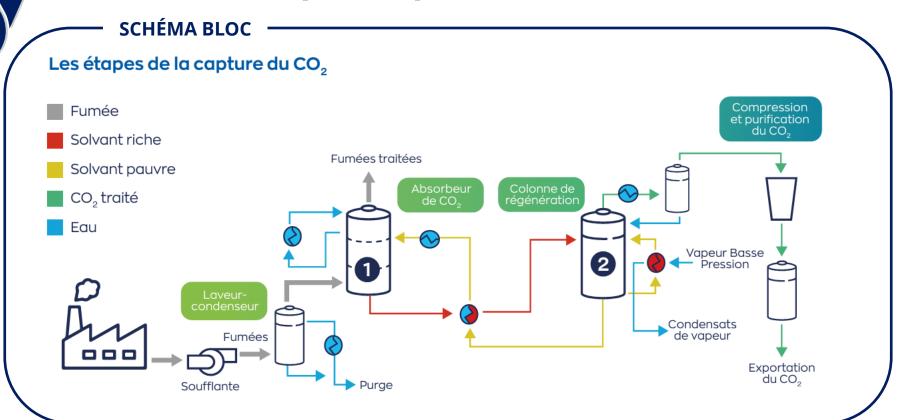
Les technologies utilisées

01	Le contexte	Sol
02	Capture du CO2	Sommaire
03	Production d'hydrogène par électrolyse	aire
04	Production du e-méthanol	
05	Synthèse du e-SAF & logistique	

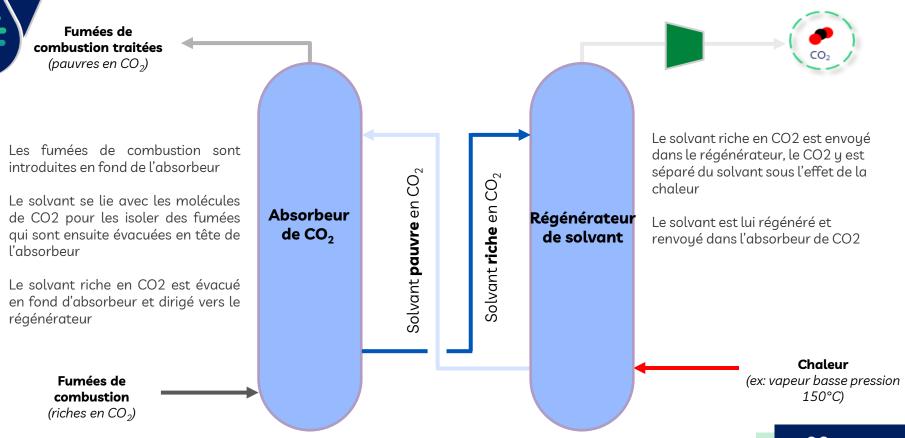


Les e-SAF, une solution d'économie circulaire liant aviation et industrie

L'aviation commerciale représentait **3,1 % des émissions de GES mondiales** en 2023 et ce pourcentage pourrait doubler d'ici 2050. Pour décarboner l'aviation, l'**électrique** ou l'**hydrogène** sont des vecteurs intéressants mais **immatures à court terme**. Dès lors, les **carburants de synthèse** sont aujourd'hui **privilégiés** pour la décarbonation du secteur.



Verso Energy produit des molécules de synthèse suivant un modèle intégré

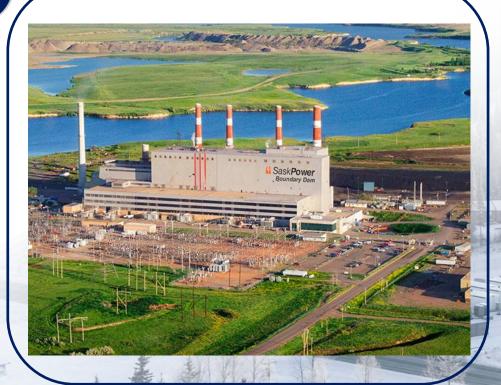


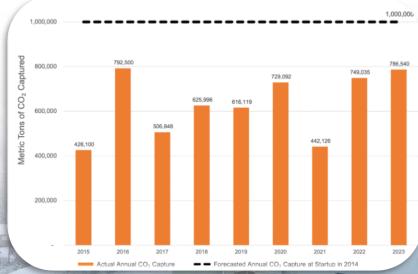
Zoom sur la brique : Capture de CO2

Technologie par absorption avec solvant

Quelles utilisations historiques du CO₂?

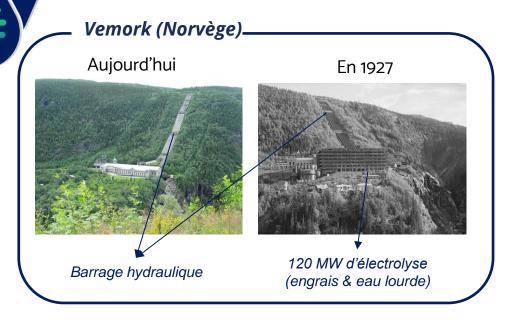
_ Serres horticoles au Sud de la Haye_




Boissons gazeuses_

Le captage de CO₂, ça existe?

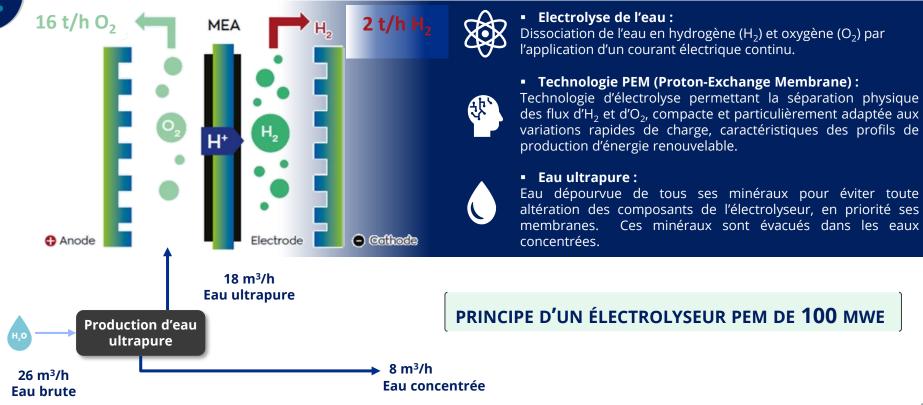
Boundary Dam Carbon Capture Project-



Sources: SaskPower monthly and quarterly Boundary Dam 3 Status Upda

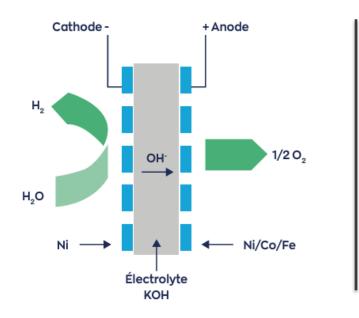
- Canada
- Sask Power
- Mise en service en 2014
- Capacité : 1000 kt/an
- Stocké en cavité souterraine (CCS)

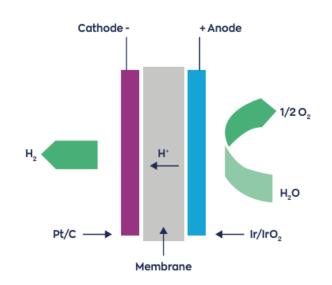
Les origines de l'électrolyse



 Absence de développement ? Pas une raison technologique mais ... économique (compétition avec le gaz naturel)

- Découverte et compréhension du principe théorique de l'électrolyse: 1800 ! (Carliste & Nicholson)
- 1900 → 1940, l'électrolyse (alcaline) était la solution privilégiée pour la production d'hydrogène à échelle industrielle


Fonctionnement d'un électrolyseur



2 technologies envisagées pour l'industrie à moyen terme

Alcaline

PEM (Membrane échangeuse de proton)

Une filière qui se structure

2 technologies envisagées pour l'industrie à moyen terme

Alcaline

+ Références

Plus grande référence en opération: **260 MW**

PEM (Membrane échangeuse de proton)

+ Flexibilité

Plus grande référence en opération: 40 MW

2 autres technologies en cours d'industrialisation (SOEC & AEM)



Qu'est ce que le méthanol?

- Le plus simple des alcools, un seul atome de carbone (CH₃OH)
- **Liquide** incolore à température ambiante & pression atmosphérique
- Une molécule « plateforme » valorisée en tant que

■ Peut être synthétisée à partir de CO_2 & d'électricité décarbonée \rightarrow e-méthanol

Le e-méthanol, ça existe?

1ère Référence Industrielle: l'usine George Olah

- Islande
- Carbon Recycling International
- Mise en service en 2012
- H₂ électrolytique
- 4 000 tonnes/an e-MeOH
- Usage: mobilité

Le e-méthanol, quels développements?

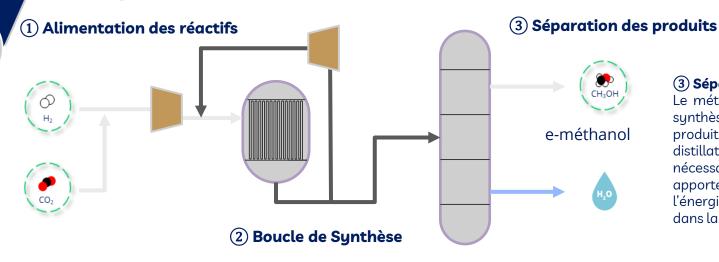
Producteurs

- Kassø (Danemark)
- Développeur : European Energy
- Mise en service : 2024
- Production: 42 000 t/an e-MeOH
- Maritime, chimie et pharmacie

Consommateurs

Importantes commandes de porteconteneurs*, horizon 2024 - 2026

19 navires



24 navires

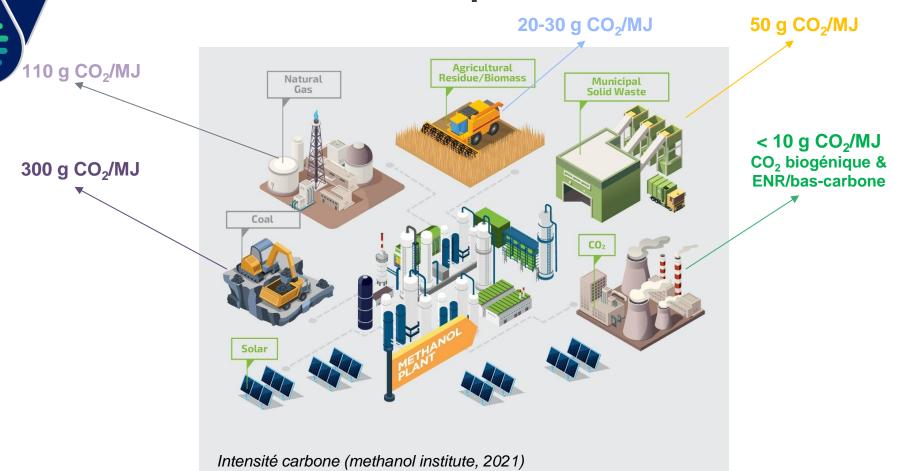
La Synthèse de e-méthanol

3 Séparation des produits

Le méthanol issu de la boucle de synthèse est séparé de l'eau co-produite dans un train de distillation. L'énergie thermique nécessaire à cette séparation est apportée majoritairement par l'énergie excédentaire générée dans la boucle de synthèse.

(1) Alimentation des réactifs

Les flux d'H₂ et de CO₂ purs sont mélangés puis comprimés à haute pression dans les proportions et conditions optimales pour la réaction de synthèse de méthanol

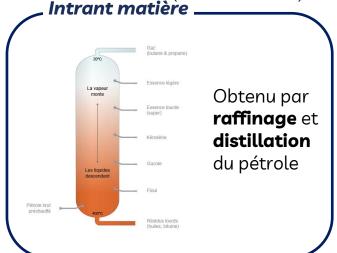

2 Boucle de Synthèse

Le mélange réactionnel est chauffé et alimenté à un réacteur contenant un catalyseur dont l'action permet la transformation du CO₂ et de l'H₂ en méthanol:

$$CO_2$$
+ 3 $H_2 \rightarrow CH_3OH + H_2O$

La chaleur nécessaire à chauffer le mélange réactionnel est apportée par la réaction de synthèse du méthanol. Cette chaleur est récupérée au sein du réacteur catalytique et sur ses produits **(réaction exothermique)**. Afin de valoriser la globalité du CO₂ et de l'H₂ alimentés à l'unité, les composés n'ayant pas réagis en sortie du réacteur catalytique sont recyclés en entrée du système

Intensité carbone de la production du méthanol



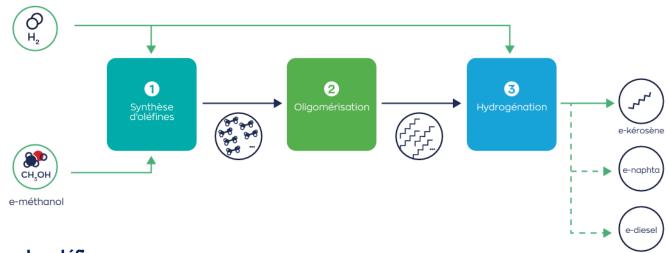
Qu'est ce que le carburant d'avion?

- Appelé aussi kérosène (souvent aussi Jet A1), c'est une chaîne carbonée avec 8 à 16 atomes de carbones (alkane C_nH_{2n+2})
- Liquide et stable à température ambiante & pression atmosphérique
- Embarqué dans les réservoirs des avions commerciaux, fret, militaire... répondant à des normes

internationales (ASTM D1655...)

Contenu énergétique.

Une densité énergétique très importante de **43,15 MJ/kg**



Grande autonomie et adaptabilité aux conditions de vol et d'aéroports

Peut aussi être synthétisé à partir d'huiles végétales & produits agricoles (SAF) ou d'e-méthanol

Synthèse de e-SAF: MTJ = Methanol to Jet

1 Synthèse des oléfines

Le e-méthanol est vaporisé puis décomposé à haute température en eau et en oléfines en présence d'un catalyseur.

2 Oligomérisation

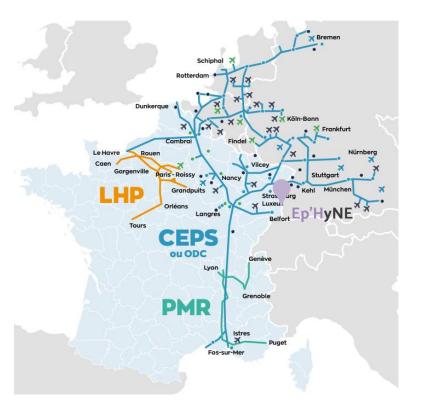
Le procédé consiste à faire réagir au cours de plusieurs étapes successives les oléfines légères en présence d'un catalyseur pour créer des chaines carbonées de poids moléculaire plus important, similaire au kérosène conventionnel.

3 Hydrogénation

Etape finale du procédé visant à saturer par hydrogénation des chaînes carbonées avec de l'hydrogène produisant du e-kérosène (e-SAF) et des sous produits.

La synthèse de e-fuel, ça existe?

Projet Haru-Oni


- Chili
- Procédé Methanol to Gasoline (MTG)
- Mise en service en 2022
- 130 000 litres par an

Méthanol to oléfines

- Chine
- Procédé Methanol-to-oleifin
- 6 unités actuellement en service depuis 2013
- Jusqu'à 800 000 tonnes d'oléfine par an

- Mélange de e-SAF avec du kérosène dans des dépôts pétroliers existants (blending)
- Des réseaux existants desservent les aéroports en carburant (canalisation Le Havre-Paris, réseau OTAN européen)

LHP Le Havre - Paris

PMR - Pipeline Méditerranée/Rhône

CEPS Central European Pipeline System ou OCD Oléoducs de Défense Commune de l'OTAN (en français)

Conclusion

- Un carburant d'intérêt, directement utilisable par l'aviation offrant une solution pour un secteur difficile à décarboner
- Un procédé de production à **échelle industrielle utilisant des technologies matures**
- Une **chaîne logistique maitrisée**, s'appuyant sur des infrastructures existantes

Echange

